Problem 1. Let $f:[0,3] \to \mathbb{R}$ be given by $f(x) = x^2$. Let n = 5.

(a) Compute the partition P of [0,3] divided into n subintervals.

(b) Compute the left Riemann sum L of f on P. Do not use a calculator.

(c) Compute the right Riemann sum R of f on P. Do not use a calculator.

(d) Which is bigger, L or R? Why? Use these two number to estimate the area under the curve.

Problem	2 .	Let	f:	[1, 4]	\rightarrow	\mathbb{R}	be	given	by	f(x)	$= \sqrt{2}$	\sqrt{x} .	Let :	n = 6

(a) Compute the partition P of [1,4] divided into n subintervals.

(b) Compute the left Riemann sum L of f on P. Use a calculator.

(c) Compute the right Riemann sum R of f on P. Use a calculator.

(d) Which is bigger, L or R? Why? Use these two number to estimate the area under the curve.